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INTRODUCTION

Sharks are common inhabitants of coastal seas and
may exert strong influences on the structure and func-
tion of ecosystems they inhabit (Worm et al. 2005,
Carlisle & Starr 2009, Papastamatiou et al. 2009). Many
potential nursery habitats have been degraded by
human activity, and disturbances such as climate
change may further impair habitat necessary to sustain
populations (Lotze et al. 2006). Alteration of habitats is
of particular concern for elasmobranchs (Carlisle &
Starr 2009), because essential habitat has not been
identified for many species, and environmental condi-
tions that influence habitat selection patterns are not

well-understood (Parsons et al. 2005), particularly for
young sharks. Many shark species are slow growing
and long-lived (Musick et al. 2000), use a variety of
habitats over broad spatial scales, and often occur in
low densities throughout their range. These life history
characteristics typically leave them vulnerable to
exploitation, and their relatively large movement
ranges in estuarine and coastal waters make identifica-
tion of essential habitat problematic.

Identification of critical habitat is a well-recognized
and essential component of sustainable resource man-
agement (Stoner et al. 2001, Stoner 2003). Marine
species are often associated with specific physical or
biological habitats, and there is growing interest in
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developing spatially explicit habitat maps for manage-
ment purposes as animal abundance or productivity is
directly linked to the amount of suitable areas avail-
able (Stoner 2003, Valavanis et al. 2008). Despite this
recognition, delineation of essential habitat has been
slow for many species in part because necessary data
are often unavailable or analytical techniques have
been unable to reliably identify critical habitat from
available data. Moreover, predicting distributions of
large, rare animals based on habitat characteristics can
be difficult (Rooper & Martin 2009). Sampling requires
adequate spatial and temporal coverage and must
account for a large number of ‘zero observations’ in the
assessment of species such as sharks.

A suite of environmental variables has been hypoth-
esized to influence elasmobranch distributions in-
cluding temperature (Morrissey & Gruber 1993, Matern
et al. 2000, Ortega et al. 2009), oxygen concentration
(Parsons & Carlson 1998, Heithaus et al. 2009), salinity
(Heupel & Simpfendorfer 2008, Ubeda et al. 2009), and
proximity to inlets into estuaries (Grubbs & Musick
2007). Short-term movement and distributions patterns
have been investigated for many shark species using
acoustic telemetry or tagging methods and linking dis-
tributions to physical or biological patterns at the study
sites (Hight & Lowe 2007, Heupel & Simpfendorfer
2008, Ortega et al. 2009, Papastamatiou et al. 2009).
However, it is difficult to definitively link variations in
habitat quality to habitat selection patterns over short
time scales (Ortega et al. 2009). Moreover, this may not
be evident in short-term studies that do not encompass
the full range of environmental conditions that influ-
ence large-scale habitat selection patterns (Heupel &
Simpfendorfer 2008). For example, temperature and
salinity influence distribution patterns of euryhaline
bull sharks that occur over a wide temporal and spatial
scale. With increasing rates of disturbance in aquatic
habitats (Lotze et al. 2006), improved abilities to pre-
dict changes in habitat quality for sensitive species a
priori are rapidly needed in order to mitigate habitat
loss or population declines. To this end, fish–habitat
relationships on larger scales are often investigated by
associating environmental conditions with catch records
using multivariate statistical techniques (Leathwick et
al. 2006, Grubbs & Musick 2007, Valavanis et. al. 2008).

Coastal habitats in the Gulf of Mexico support a di-
verse and abundant shark assemblage (Parsons et al.
2005). At least 16 species of coastal sharks use Gulf of
Mexico waters off Florida and Texas as juvenile habitat
(Hueter & Tyminski 2007, McCandless et al. 2007).
However, coastal shark distribution patterns in the
northwestern Gulf of Mexico including the entire
Texas coast are poorly understood, and there is cur-
rently no appropriate baseline with which to measure
future management actions or predict the impact of

natural or anthropogenic disturbances. The goal of this
study was to develop species distribution models for 3
coastal shark species in the northwestern Gulf of Mex-
ico to promote sustainable management of these im-
portant predators. We developed a long-term fisheries-
independent data set to link shark distribution and
environmental conditions and develop species-specific
distribution models. Specifically, the goal of this study
was to characterize environmental influences on shark
distribution patterns of the northern Gulf of Mexico.

MATERIALS AND METHODS

Study Area. This study was conducted in 9 major bay
systems along the Texas coast in the northwestern Gulf
of Mexico from 1975 to 2006 (Fig. 1). Barrier islands
separate coastal estuaries from the Gulf of Mexico
along the majority of the coast and saltwater exchange
occurs via 6 major tidal inlets. Texas bays are shallow,
subtropical estuaries that are physically dynamic, sup-
port a variety of habitat types, and provide nursery
habitat for many nektonic species of recreational, com-
mercial, or ecological importance (Reese et al. 2008).

Field Collections. Biological: Shark catch data
were obtained from the Texas Parks and Wildlife
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Fig. 1. Coastal shark gill net survey locations (n = 19 757) from 1975
to 2006 in Texas, USA. Estuaries are connected to the Gulf of
Mexico via 6 ocean passes (tidal inlets, ), from north to south:
Sabine Pass, Galveston Pass, Matagorda ship channel, Aransas 

Pass, Mansfield Pass, and Brazos Santiago Pass



Department coastwide fisheries gill net monitoring
program that was established in all Texas bay systems
in 1975 and continued through 2006. Coastal fisheries
resource monitoring data were collected as a stratified
cluster sampling design; each bay system serves as
non-overlapping strata with a fixed number of sam-
ples per season (n = 45 bay–1 season–1). Gill nets were
deployed each spring (April to June) and fall (Sep-
tember to November) (Martinez-Andrade et al. 2009).
Sample locations were drawn independently and
without replacement for each season (Martinez-
Andrade et al. 2009). For this study, gill net collection
data from 9 bay systems (1975 to 2006, n = 19757;
Table 1) were used to identify shark-habitat relation-
ships and develop shark distribution maps within
Texas’ major bay systems. Sharks were sampled using
standardized gill nets (183 m in length) set perpendic-
ular to shore. Nets were constructed of 4 panels with
mesh sizes of 76, 102, 127, and 152 mm, in this order
with the smallest mesh size nearest the shore. Gill
nets were deployed 1 h before sunset, fished over-
night, and retrieved within 4 h off sunrise the follow-
ing day (set time was noted for each sample). Cap-
tured sharks were identified to species, measured,
and released. Gill nets employed in this study were
inefficient at capturing sharks >2 m; thus, large
sharks were rare in this study although they are pre-
sent in the bay at times (M. Fisher pers. comm.).

Physical: Patterns of 11 variables relevant to sharks
were examined coastwide to investigate relationships
between environmental conditions and shark distribu-
tions (Table 1). Data including salinity, temperature,
turbidity, and dissolved oxygen (DO) were collected in
the surface waters (0 to 15 cm) at the offshore end of
the gill net during net retrieval (Martinez-Andrade et
al. 2009). Turbidity readings were processed in the lab-
oratory within 24 h using a calibrated turbidimeter.
Depth at the offshore end of each gill net set was also
noted. All variables were measured during each sam-
pling (i.e. all years and bays) although a few observa-

tions (<1%) had missing values for a single variable.
Observations missing only a single variable were
retained for the analysis as the modeling technique
accommodates missing values through the use of sur-
rogates (Elith et al. 2008).

Freshwater inflow into the major estuarine systems
was determined from US Geological Survey (USGS)
(1976 to 2006; no missing years) stream gauges
(available at: http://midgewater.twdb.state.tx.us/bays_
estuaries/hydrologypage.html) to estimate the relative
importance of freshwater inflow on shark habitat qual-
ity. Mean monthly surface inflow and freshwater bal-
ance were determined for each bay system (except
East Matagorda Bay, data unavailable) during the
study using the following equations provided by the
Texas Water Development Board, Austin, Texas (avail-
able at: http://midgewater.twdb.state.tx.us/bays_estu-
aries/hydrologypage.html):

(1) Surface inflow = Gauged flow + Modeled flow –
Diverted flow + Returned flow

(2) Freshwater balance = Surface inflow – Evapora-
tion from estuary surface + Precipitation on estuary
surface.

Spatial: Saltwater exchange between bays and the
Gulf of Mexico occurs via 6 tidal inlets (Fig. 1). To
examine potential relationships between estuarine
shark distribution and the connection to the Gulf of
Mexico, we calculated the distance from each sam-
pling location to the nearest tidal connection to the
Gulf of Mexico using the cost-distance function in the
ArcGIS software package with the spatial analyst
extension (ESRI), using the shoreline as a barrier
(Whaley et al. 2007). Cost-distance functions calculate
the shortest distance between 2 points but were con-
strained within geographic boundaries (e.g. water) to
provide more accurate relative distance estimates than
euclidian (straight-line) techniques.

Modeling approach. We used boosted regression
trees (BRT) to examine relationships between shark
distribution and environmental variables and to pre-
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Table 1. Predictors used in the analyses. na: not applicable

Variable Description Mean Range

Salinity (psu) Surface salinity at offshore end of the gill net 22.8 0–69
Temperature (°C) Surface temperature at offshore end of gill net 26.2 4.8–38.0
Depth (m) Depth at the offshore end of gill net set 1.1 0.1–8.5
Distance (cost-distance units) Distance to nearest tidal inlet 12.6 1–32
Turbidity (NTU) Turbidity of surface water at offshore end of gill net 28.2 0–999
DO (mg O2 l–1) Surface dissolved oxygen concentration at offshore 7.9 0.6–28.5

end of gill net
Surface inflow (acre-feet mo–1) Mean monthly surface inflow per bay system 398594 24–4355617
Freshwater balance (acre-feet mo–1) Calculated from surface inflow – evaporation from 369569 –269000–4370924

estuary surface
Time (h) Number of hours gill net was deployed 13.7 9.4–21.1
Month Month sample occurred na na
Year Year sample occurred na na
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dict probability of capture at sites withheld from the
model building for bull, blacktip, and bonnethead
sharks. Prior to model fitting the entire data set was
randomly partitioned into training and testing data sets
(n = 9879 training; n = 9878 testing). After model fit-
ting, probability of capture was predicted to 9878
testing samples covering the entire coast. Coastwide
species distribution models were then developed by
interpolating catch probabilities from the 9878 inde-
pendent samples using ordinary kriging. Suites of
environmental conditions were determined for ‘spring’
and ‘fall’ conditions based on environmental parame-
ters measured during each season of this study (sam-
ples were not collected during winter). The BRT model
output was then used to predict probability of capture
coastwide during these specific seasonal conditions
(Fig. 2).

Boosted regression trees: The BRT use a model-
averaging (ensemble) method that allows for both ex-
planation and prediction (Elith et al. 2008). Despite this
utility BRT have only recently been applied to ecologi-
cal questions (Friedman 2001, Leathwick et al. 2006,
Elith et al. 2008). Each individual model consists of a
simple regression tree based on a series of binary splits
constructed from the predictor variables (Hastie et al.
2001), accommodates continuous or categorical predic-
tors, missing values, and is not affected by transforma-
tion or outliers. This technique can also fit complex

non-linear relationships and often has superior predic-
tive performance to other techniques such as general-
ized linear and additive models that are often used to
model species-habitat relationships (Elith et al. 2006,
Leathwick et al. 2006, Elith et al. 2008, Leathwick et al.
2008, Parisien & Moritz 2009). The relative importance
of variables can be determined by averaging the num-
ber of times a variable is selected for splitting and the
squared improvement resulting from these splits (Fried-
man 2001, Friedman & Meulman 2003). Values are
scaled to 100, and higher numbers indicate a stronger
influence on the response variable. The ability to
model interactions is controlled by a tree complexity
(tc) parameter where the value specifies the number of
nodes on each tree and subsequently the ability to
model interactions (Leathwick et al. 2006).

Analyses were carried out in R (version 2.7.1, R Devel-
opment Core Team, 2004) using the ‘gbm’ library sup-
plemented with functions from Sing et al. (2005) and
Elith et al. (2008). All models were fit to allow inter-
actions using a tree complexity of 5 with a learning rate
0.01 or 0.005 to minimize predictive deviance and max-
imize predictive performance. During preliminary analy-
ses, a range of tree complexities and learning rates were
examined. Complex trees (i.e. tc = 5) improved predic-
tive performance and learning rates (lr) > 0.05 over-fit
training data, while rates slower than 0.005 did not im-
prove model performance. Ten-fold cross validation of

training data (n = 9879) was used to
determine the optimal number of trees
for each model (i.e. number of trees
giving best predictive performance) and
ranged between 2400 and 3750 trees.

Despite careful model fitting, BRT
models typically over-fit training data
sets (Elith et al. 2008, Leathwick et al.
2008); therefore, model performance
was assessed on predictions to the
independent testing set (n = 9878) that
were withheld during cross validation.
For each model, 2 performance metrics
were determined: (1) predictive de-
viance and (2) the area under the
receiver operator characteristic curve
(ROC). Predictive deviance provides an
estimate of the fit between predicted
and raw values when predicting to
independent data and was reported as
a percentage of the total deviance for
each model. Values for ROC estimate
the degree to which fitted values dis-
criminate between observed presences
and absences and can be interpreted as
the probability that a presence for a
species drawn at random will have a
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Fig. 2. Carcharhinus leucas, C. limbatus and Sphyrna tiburo. Modeling and spatial
distribution of bull, blacktip, and bonnethead sharks on the Texas coast. Rectan-
gles indicate a process and parallelograms indicate a data input or output. BRT =
Boosted regression trees, GIS = Geographic information system. FW: freshwater
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higher fitted probability than an absence drawn at ran-
dom (Parisien & Moritz 2009). Values of ROC range
from 0.5 to 1 where a 1 indicates perfect discrimination
of probabilities between presence and absence sam-
ples and a value of 0.5 indicates that model perfor-
mance is no better than random. While models with
ROC values >0.6 are considered useful (Parisien &
Moritz 2009), values >0.8 are considered very good,
and above >0.9 excellent (Lane et al. 2009). In addition
to identifying important environmental variables con-
tributing to shark distribution patterns, we also wanted
to generate spatially explicit predictions of catch prob-
ability at locations withheld during model training. We
predicted the probability of capture to each site in the
testing data set (n = 9878) using a form of logistic
regression (Elith et al. 2008) where the probability that
a species occurs (y = 1), at a location with covariates X,
P(y = 1 | X) using the logit: logit(P (y = 1 | X ) = f (X )).

Habitat suitability models: Kriging is a spatial inter-
polation algorithm that was used to predict values at
unsampled sites in the study area (Saveliev et al. 2007).
This method uses the variogram to express the spatial
variation, and it minimizes the error of predicted val-
ues, which are estimated by spatial distribution of the
predicted values. We used ordinary kriging with a
spherical semivariogram with the predicted proba-
bilities of capture at each location (from the BRT
model) as input into the kriging model. As this tech-
nique assumes normality, probability of capture values

was transformed prior to analysis using the natural log-
arithm (ln) and met this assumption. To evaluate sea-
sonal differences in distribution patterns, environmen-
tal conditions during spring and fall seasons were
determined coastwide from the sampling data using
ordinary kriging. Therefore, environmental conditions
for spring and fall were determined for the entire study
area and the BRT model was used to predict probabil-
ity of capture during these conditions. Predictive per-
formance of the spatial models were validated using
cross-validation. As samples were collected nearshore,
spatial models were constrained within 1 km of the
shoreline (Whaley et al. 2007).

RESULTS

Physicochemical

Patterns of 11 predictor variables were examined to
investigate relationships between environmental con-
ditions and shark distributions (Table 1). On the Texas
coast, physical conditions vary widely among bay sys-
tems creating an ideal study region. Salinity increases
with decreasing latitude from hyposaline (positive)
(Sabine Lake and Galveston Bay) to moderately saline
(15 to 35 psu) along the central coast, and hypersaline
(negative) estuaries (>35 psu) in the southernmost
Upper and Lower Laguna Madre (Fig. 3A). Mean sea
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Fig. 3. (A) Mean salinity (0 to 44 psu), (B) temperature (21 to 29°C), and (C) distance to tidal inlets (cost-distance units) of sample
locations in Texas bays. Distance to tidal inlet was estimated using the cost-distance function in ArcGIS. Maps of mean salinity 

and temperature were created by kriging measured values (n = 17 757) during gill net sampling from 1976 to 2006
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surface temperature also increases slightly from north
to south along the coast (Fig. 3B). Distance to the near-
est inlet varies for the 9 major bay systems with the
Upper Laguna Madre  and East Matagorda Bay the
most isolated from the GOM (Fig. 3C). DO concentra-
tion, turbidity, and sampling depths were similar
among bay systems and a complete description of the
environmental variables and ranges are described in
Table 2. Freshwater inflow and balance, which affect
salinity, varied dramatically along the coast with high-
est inflow rates in the northern bays (Sabine Lake and
Galveston Bay), intermediate along the central coast
and, low in the Laguna Madre (Table 2).

Shark distribution and habitat modeling

The shark assemblage in this study was numerically
dominated by 3 species, bull shark, blacktip, and bon-
nethead shark, and a total of 9687 sharks were cap-
tured in the study. Size-frequency histograms were
developed for each species and suggest that blacktip
and bull shark catch was dominated by juveniles,
while bonnethead were collected throughout their
ontogeny (Fig. 4). With the exception of bull sharks,
length distributions were bimodal, suggesting that
multiple age classes are using coastal bays.

Bull shark

Bull shark was the most abundant species sampled
(frequency of occurrence = 12.0%), and model evalua-
tion suggested very good predictive performance to in-
dependent data (ROC = 0.84; Table 3). Bull shark distri-
butions were most strongly influenced by salinity and
temperature (Fig. 5). Fitted functions from the BRT
model indicate that bull sharks occur in salinities from 0
to 40 psu but were most common in moderate salinities
(15 to 30 psu) and rarely occurred in areas >35 psu
(Fig. 6A). With respect to temperature, bull sharks were
rare in waters below 20°C, while probability of capture
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Table 2. Summary of physicochemical predictors used in the analysis. DO: dissolved oxygen

Location Salinity (psu) Temperature (°C) Depth (m) Turbidity (NTU) DO (mg O2 l–1)

Sabine Lake 7.9 ± 6.1 25.6 ± 4.1 1.1 ± 0.5 19.6 ± 28.5 7.7 ± 1.6
Galveston Bay 16.9 ± 8.5 25.5 ± 3.9 1.2 ± 0.5 27.5 ± 31.0 7.9 ± 2.0
East Matagorda Bay 20.8 ± 8.3 26.2 ± 4.2 0.9 ± 0.3 33.4 ± 39.9 7.8 ± 1.9
Matagorda Bay 19.3 ± 9.0 25.8 ± 3.9 1.1 ± 0.4 36.9 ± 47.7 7.7 ± 1.7
San Antonio Bay 18.7 ± 10.8 26.1 ± 3.7 1.1 ± 0.4 25.4 ± 33.2 8.1 ± 2.0
Aransas Bay 18.3 ± 9.4 26.2 ± 3.7 1.1 ± 0.4 27.1 ± 33.6 8.4 ± 2.1
Corpus Christi Bay 29.0 ± 7.4 26.2 ± 3.7 1.3 ± 0.6 24.1 ± 33.4 7.7 ± 1.8
Upper Laguna Madre 37.5 ± 10.1 26.8 ± 3.7 1.1 ± 0.4 27.6 ± 44.7 7.5 ± 1.9
Lower Laguna Madre 32.2 ± 7.3 27.1 ± 3.5 1.0 ± 0.5 33.4 ± 56.9 7.9 ± 2.1

Bull shark
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Fig. 4. Carcharhinus leucas, C. limbatus and Sphyrna tiburo.
Size frequency and probability density histogram of (A) bull 

shark, (B) blacktip shark, and (C) bonnethead shark
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increased rapidly with temperatures up to 33°C and
then declined precipitously. However, other variables
including freshwater inflow, turbidity, and proximity to
tidal inlets also influenced distribution patterns (Fig. 5).

Spatially explicit model predictions of probability of
capture from the BRT models were determined for
spring, fall, and mean overall conditions. Ordinary
kriging was used for spatial interpolation of probability
of catch values from the study sites to nearby unsam-
pled areas. Kriging models were validated using cross-
validation and had very low error rates (Table 4). The

highest probability of capturing bull sharks occurred
along the central coast in Matagorda and San Antonio
bays (Fig. 7). Moderate catch rates were predicted
along most of the coast including the hyposaline
Galveston Bay and Sabine Lake. Low probabilities of
capture were predicted in East Matagorda and Upper
and Lower Laguna Madre due to combination of shal-
low waters and high salinities (Upper and Lower
Laguna Madre). Few seasonal differences were noted
between spring and fall probability of capture esti-
mates and was supported by the relatively low impor-
tance of the month variable in the BRT model (Fig. 5).

Blacktip shark

Blacktip sharks were the second most abundant spe-
cies sampled (frequency of occurrence = 3.4%), and
model evaluation suggested good predictive perfor-
mance to independent data (ROC = 0.87; Table 3). Sim-
ilar to bull shark, fitted functions of the most influential
predictors were non-linear and complex (Fig. 6B). Fit-
ted functions were most strongly influenced by salinity,
inlet distance, depth, and temperature suggesting a
preference for warm waters near tidal inlets of moder-
ate salinities that are proximate to deeper waters.

Spatial predictions of catch probabilities from the
BRT models were made using ordinary kriging and
had low error rates (Table 4). For blacktip sharks, high-
est probability of capture was predicted along the cen-
tral coast in Matagorda and San Antonio bays (Fig. 8)
and predicted distribution patterns were very similar
between seasons. High probability areas were restricted
near tidal inlets along the coast. Probability of capture
was very low in all areas of the Sabine Lake (hypo-
saline) and the Upper Laguna Madre (hypersaline).

Bonnethead shark

Bonnethead sharks were captured in 3.1% of all
samples. Model evaluation for this species also sug-
gested good predictive performance of the BRT to inde-
pendent data (ROC = 0.86; Table 3). Similar to blacktip
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Table 3. Predictive performance of boosted regression trees (BRT) models evaluated on 3 data sets, training (n = 9879), cross-validation 
(n = 9879), and independent (n = 9878) for 3 coastal shark species. lr = learning rate, nt = number of trees fitted

Percentage deviance explained Area under the receiver operating
characteristic curve (ROC)

Species lr nt Inde- Cross- Training Total Inde- Cross- Training Frequency of 
pendent validation deviance pendent validation (SE) occurrence (%)

Bull shark 0.01 3500 24.30 20.30 40.00 0.752 0.84 0.823 (0.005) 0.928 12
Blacktip shark 0.005 3750 18.60 18.30 45.70 0.308 0.87 0.848 (0.006) 0.962 3
Bonnethead shark 0.005 2400 18.60 18.30 45.70 0.277 0.86 0.881 (0.009) 0.963 3
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Fig. 5. Average contributions (%) of environmental variables
predicting presence or absence of 3 coastal shark species.
Variables are ranked in decreasing order based on average
overall contribution. DO: dissolved oxygen. FW: freshwater
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sharks, fitted functions for bonnethead were highest at
sites >1 m depth and proximal to tidal inlets (Fig. 6C).
Salinity also influenced distribution patterns, as bon-
nethead demonstrated a distinct preference for salini-
ties between 20 and 40 psu.

Spatial predictions of catch probabilities from the
BRT models were made for bonnethead shark using
ordinary kriging and had low error rates (Table 4).
Probability of capture of bonnethead was similar to
blacktip sharks in that areas near tidal inlets with
access to deeper waters were most important. Highest
probabilities of capture were predicted near the inlets
on the central coast and this was consistent between
seasons, and for overall estimates (Fig. 9). Probability
of capture was low in both northern bay systems

(Galveston Bay and Sabine Lake), however was higher
in Lower Laguna Madre than for both bull and black-
tip sharks.

DISCUSSION

Distribution patterns of sharks were influenced by
several environmental variables. Overall, both general
and species-specific patterns were observed. All 3 spe-
cies displayed distinct salinity preferences, and this
was the most important factor in the BRT model for
blacktip and bull sharks, and the third most influential
variable for bonnethead. These species were most
common in moderate salinities (bull shark 10 to 30 psu,
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blacktip shark 20 to 35 psu, bonnethead shark 20 to 40
psu) and avoided hypersaline waters (i.e. Upper
Laguna Madre). Capture rates of blacktip and bonnet-
head sharks were low in hyposaline waters, while bull
sharks were common in these areas. Bull sharks are
unique in their ability to osmoregulate long-term in
low salinity waters. Thorson et al. (1973) hypothesized
that salinity would not influence coastal bull shark dis-
tribution patterns. However our data, as well as other
recent studies (Simpfendorfer et al. 2005, Heupel and
Simpfendorfer 2008), indicate that bull shark captures
occurred within a distinct range of moderate salinities.
However, blacktip sharks were uncommon in low
salinities and were largely restricted to areas between
salinities 20 to 35 psu. This preference is similar to
results from Florida, USA estuaries were blacktip
sharks were found between 20 to 36 psu; however,
juveniles were restricted to a much narrower range (31
to 36 psu; Bethea et al. 2006). Movement of bonnet-
head sharks in a Florida, USA estuary was also influ-

enced by salinity and were found at salinities between
11 to 36 psu over a 2 year period (Ubeda et al. 2009),
similar to the results of the present long-term study.

Distribution patterns of sharks in relation to salinity
may be a mechanism to reduce energetic costs associ-
ated with osmoregulation permitting increased growth
rates and reducing times in size classes where mortal-
ity rates are highest. Avoidance of hypersaline areas
such as Upper Laguna Madre may reflect their inabil-
ity or physiological costs of osmoregulation under
extreme hypersaline conditions. Based on length-at-
age estimations, the majority of sharks captured in the
present study were juveniles (except bonnethead
sharks) and evidence suggests that energetic costs of
osmoregulation are highest for young sharks when
surface to volume ratio is lowest (Heupel & Simpfen-
dorfer 2008). Juvenile blacktip sharks were captured
in a narrow range of salinities in Florida, USA (31 to
36 psu), while adults occurred in a much broader range
(21 to 36 psu; Bethea et al. 2006). Studies of juvenile

287

Table 4. Cross-validation results of ordinary kriging model for 3 coastal shark species. Mean cond.: mean overall conditions

Bull shark Blacktip shark Bonnethead shark
Spring Fall Mean Spring Fall Mean Spring Fall Mean

cond. cond. cond.

Mean <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01
Root-mean-square 0.07 0.12 0.12 0.03 0.05 0.05 0.00 0.05 0.05
Average SE 0.07 0.12 0.40 0.03 0.06 0.06 0.04 0.05 0.11
Mean standardized 0.00 0.00 -0.01 0.00 0.00 0.00 0.04 0.00 0.12
Root-mean-square standardized 0.98 1.00 0.37 0.92 0.90 0.83 0.00 0.96 0.53
n 7704 8032 7856 7704 8032 7856 8312 8032 7856

Fig. 7. Carcharhinus leucas. Probability of capture maps of bull shark along the Texas coast as predicted by a boosted regression
trees model for (A) spring, (B) fall, and (C) mean overall conditions. Predictions were restricted to areas within 1 km of the shoreline
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bull sharks in Florida estuaries found similar patterns
(Simpfendorfer et al. 2005, Heupel & Simpfendorfer
2008). Selection of habitats based on salinity has been
demonstrated in teleost fishes as a mechanism to re-
duce energetic costs of osmoregulation (Marais 1978)
while permitting more energy for growth or reproduc-
tion. Laboratory experiments on euryhaline killifish

(Fundulus heterclitus) indicate that osmoregulation
typically requires 6 to 10% of the total energy budget
and fish select areas closest to their own osmolarity
(Kidder 2006). Previous studies have hypothesized that
use of low salinity waters is based on prey access or
predator avoidance (Pillans & Franklin 2004, Pillans et
al. 2005). However, Heupel & Simpfendorfer (2008)
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Fig. 8. Carcharhinus limbatus. Probability of capture maps of blacktip shark along the Texas coast as predicted by a boosted
regression trees model for (A) spring, (B) fall, and (C) mean overall conditions. Predictions were restricted to areas within 1 km 

of the shoreline

Fig. 9. Sphyrna tiburo. Probability of capture maps of bonnethead shark along the Texas coast as predicted by a boosted
regression trees model for (A) spring, (B) fall, and (C) mean overall conditions. Predictions were restricted to areas within 1 km 

of the shoreline
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suggest that salinity preferences limit distribution pat-
terns of juvenile bull sharks to between 7 and 20 psu.
The present study expands these findings over a wider
range of salinities (0 to 60 psu) for 3 shark species, and
supports the hypothesis that sharks are using behavior
to reduce metabolic demands of osmoregulation.

Temperature also strongly influenced distribution
patterns of sharks. Few sharks were captured below
20°C; however, catch rates for all species increased
rapidly with increasing temperature between 20 and
33°C before declining again. Selection for warmer
temperatures is also consistent with habitat use to
maximize physiological performance as mean temper-
atures were warmer in samples where sharks were
present, and this pattern was consistent across all
months sampled. Like most other coastal species, juve-
nile blacktip sharks use estuaries as nursery habitat
to reduce mortality rates (Beck et al. 2001), and the
preference for increased temperatures may increase
growth rates and boost metabolic rates (Heupel et
al. 2007). In a study of blacktip sharks, Heupel and
Simpfendorfer (2002) reported highest mortality rates
during the first 15 weeks of life when animals are
smallest and susceptible to the widest range of preda-
tors. Size of blacktip captured in the present study
indicated that most were juveniles and habitat use
may reflect a combination of rapid growth and lower
mortality rates. Increasing catch rates of juvenile bull
sharks with temperature was also reported by Simpfen-
dorfer et al. (2005) while temperature was only moder-
ately important for bonnethead sharks (Ubeda et al.
2009). Similarly, in this study temperature was not an
important predictor of catch rates for bonnethead
sharks as depth and distance to inlets most strongly
influenced distribution patterns for this species. Tem-
perature influences metabolic rate and determines
rates of biochemical reactions and in this case, blacktip
and bull sharks may be using behavioral thermoregu-
lation as a means to increase growth rates. However, at
extremely high temperatures (i.e. >33°C) catch rates of
all 3 shark species were low, suggesting an upper ther-
mal limit on habitats sharks can occupy.

Realized spatial distribution patterns integrate bio-
logical and environmental influences that ultimately
determine habitat use patterns. Fry (1971) stated that
the environment influences activities (i.e. movement)
of an organism through metabolic effects and various
environmental attributes interact in their effects on
metabolism (Neill et al. 1994). Along the Texas coast,
salinity and temperature were the greatest determi-
nants of habitat use patterns and were moderated by
climate patterns, river inflow, and water exchange
with the Gulf of Mexico via tidal inlets. Although distri-
bution patterns of bull sharks were not restricted to
areas near tidal inlets, they are likely important com-

ponents of habitat both as access corridors and as a
source of oceanic-type waters. The brackish estuarine
waters along the central Texas coast may represent the
best integration of these factors contributing to higher
probability of capture estimates in these areas. Proba-
bility of blacktip and bonnethead shark captures were
highest in areas proximate to tidal inlets where waters
are typically warm, near oceanic salinities, with access
to deeper waters. Observed distribution patterns could
also result from phenomena correlated with environ-
mental patterns, such as prey or predator density which
was not included in this study. However, Heupel and
Hueter (2002) found no correlation between habitat
selection and prey abundance of blacktip sharks in a
Florida nursery suggesting other factors are the pri-
mary determinants of habitat use patterns.

Despite the utility of our modeling approach, there
are some limitations to this methodology. Model evalu-
ation indicated very good performance of the BRT at
predicting independent testing data although the
inference value may be limited due to high residual
deviance in the models. However, data mining tech-
niques can only find patterns that actually exist (Brod-
ley et al. 1999), and the high residual deviance in the
BRT models for all 3 species may suggest that some
variables important in the habitat usage of these spe-
cies may not have been included in the study. Biotic
components, including prey availability, movement
patterns (Papastamatiou et al. 2009) or philopatry
(Hueter et al. 2005) of individuals were not considered
in this study. Additionally, distributional models are
correlational, thus they do not elucidate the mecha-
nisms for species–habitat associations. Experimental
approaches examining factors that influence habitat
quality including growth rates or survivorship of indi-
viduals are necessary to determine causation (Vala-
vanis et al. 2008). However, using our approach, we
were able to simultaneously examine parameters
and ranges of parameters related to habitat suitability
laying the groundwork for future hypothesis-driven
studies. Spatially explicit models permit applications
that are not feasible with other approaches (Stoner et
al. 2001) including (1) prediction of distribution pat-
terns related to dynamic environmental patterns (i.e.
temperature, salinity etc.), (2) identification of habitats
needed for conservation of species, and (3) predictions
of effects of habitat disturbance or alteration from
either natural or anthropogenic causes.

Spatially explicit maps permit rapid identification
and delineation of important habitats. For the shark
species in the current study, areas along the central
coast near tidal inlets provide highest probability of
capture. Bull sharks extend considerable distances into
estuaries where low or moderate salinity waters are
available. All species were rare in hypersaline habitats
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(i.e. Upper Laguna Madre) and areas distant from
access points to the Gulf of Mexico. Predicted distribu-
tion patterns were similar between spring and fall sea-
sons for all 3 species, although the greatest environ-
mental variation of salinity and temperature occurs
between winter and summer seasons. Sharks were not
sampled during winter conditions or July–August and
further study is required to evaluate shark distribution
patterns during this period. Despite the limited sea-
sonal sampling, the Texas coast is unique in that the
estuaries represent a natural gradient in salinity (from
hypo- to hypersaline) and temperatures. This fact, cou-
pled with the long time series of the present study
(32 yr), enabled sampling over an extremely wide
range of environmental conditions (Table 1). While
additional sampling in winter and summer months is
necessary to enable validated spatially-explicit predic-
tions for these periods, our results predict similar pat-
terns in the summer to observed spring–fall patterns
and low probability of occurrence during winter for all
3 species primarily due to low temperatures.

Realized distribution patterns of these species may
integrate both the spatial arrangement of habitats and
the environmental conditions to determine habitat
quality. In July 2005, the US Army Corps of Engineers
dredged and reopened Packery Channel creating a
new tidal connection to the Gulf of Mexico near Upper
Laguna Madre and Corpus Christi Bay to increase
water exchange, moderate salinities, and provide an
additional ingress point for estuarine nekton (Reese et
al. 2008). This management action may also improve
habitat quality for sharks in this area by moderating
salinities and providing additional access to these areas.
Continued monitoring will be necessary to evaluate
this impact.

Despite considerable interest, progress in identifica-
tion of critical habitats for large mobile species (i.e.
sharks) has been slow. This is due in part to the paucity
of data over adequate spatial and temporal scales to
characterize distribution patterns and empirical diffi-
culties modeling species habitat distributions of rare
animals (Rooper & Martin 2009). Our long-term (32 yr),
statewide assessment of 9 estuaries provides a first
attempt at delineating critical habitat and identifica-
tion of important environmental influences on shark
habitat value in the northwestern Gulf of Mexico. In
addition, we provide a framework in which to consider
potential impacts of habitat alteration on shark habi-
tat quality a priori, an important consideration in the
light of continued human expansion and alteration of
coastal habitats (Lotze et al. 2006). In Texas estuaries
increasing temperatures and declining dissolved oxy-
gen concentrations have been reported (Applebaum et
al. 2005), and reduced freshwater inflow to the Texas
coast is predicted due to global climate change (Ward

2009). Improving our ability to manage coastal shark
stocks is critical as shark populations have declined in
the Gulf of Mexico (Baum & Myers 2004). Also, black-
tip shark is an important component US commercial
shark fishery (NMFS 2008) and are also heavily tar-
geted in Mexican fisheries (Hueter et al. 2007). While
blacktip shark is not currently overfished in the Gulf of
Mexico (NMFS 2008), increasing fishing pressure or
alteration of critical coastal habitats lends the potential
for overexploitation of this species as well.

Long-term conservation requires identification and
protection of critical ecosystems and the myriad of
processes that influence habitat value (Levin & Stunz
2005). Our results provide new insight into the habitat
requirements of coastal sharks in the northwestern
Gulf of Mexico and should provide practical informa-
tion for conserving shark habitat and managing coastal
resources. The development of spatially explicit mod-
els allows for prioritization of areas for conservation
and provides insight into critical ecosystem attributes
(i.e. salinity regimes) that merit protection. Areas with
high probabilities of capture typically had warm tem-
peratures and moderate salinities, highlighting the
importance of both freshwater inflow and access to the
Gulf of Mexico via tidal inlets for shark habitat suit-
ability.
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